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It is shown that a bunch of electrons which move in an active medium can be accelerated. The acceleration
is proportional to the population inversion and the number of electrons in the bunch. As reference we compare
the acceleration force with the deceleration experienced by the same bunch as it traverses a dielectric and
metallic medium.@S1063-651X~96!08005-1#

PACS number~s!: 41.60.Bq, 41.75.2i, 52.75.Di

I. INTRODUCTION

When an electron moves along a vacuum channel in a
dielectric material it may cause radiation to be emitted pro-
vided that its velocity is greater than the phase velocity of an
electromagnetic plane wave in the medium. This is the so-
called Čerenkov radiation. What a remote observer measures
as electromagnetic energy comes at the expense of the par-
ticle’s kinetic energy or, in other words, the particle is decel-
erated. For a better understanding of the deceleration force,
one has to examine the field distribution in the vicinity of the
particle. Ignoring for a moment the presence of the dielectric,
a point charge generates in its rest frame of reference an
electrostatic field which transforms in the laboratory frame
into an infinite spectrum of evanescent waves. As these
waves hit the discontinuity between the vacuum channel and
the dielectric, a so-called secondary field is generated. This is
the reaction of the medium to the presence of the charged
particle. It is the action of this secondary field which decel-
erates the electron. In this study it will be shown that if,
instead of a passive dielectric medium, an active medium is
used, the action of this secondary field may cause the particle
to accelerate. Thus energy stored in the medium can be trans-
ferred to the moving electron.

An additional way to examine the proposed acceleration
scheme is to consider the microscopic processes. In particu-
lar, let us consider an ensemble of atoms of which each one
is modeled by a two-level system. The number of atoms in
which the electron is in the upper level is larger than the
number of these in the lower level, i.e., the population is
inverted. As indicated above, attached to a moving charge
there is a broadband spectrum of evanescent waves, includ-
ing the resonance frequency corresponding to the two-level
system. These waves can be conceived as a spectrum of vir-
tual photons continuously emitted and absorbed by the elec-
tron. When a virtual photon corresponding to the resonance
frequency impinges upon an excited atom, its effect is iden-
tical to that of a regular photon: it stimulates the atom and
two identical ~phase correlated! photons are emitted. One
photon is identical with the initial and the second is a real
photon. Since the two are phase correlated, the real photon
can be absorbed by the moving electron, causing the latter’s
acceleration. The inverse process is also possible: if the vir-
tual photon encounters an atom in the ground state and ex-
cites it, then the moving electron loses energy, i.e., it is being
slowed down. We may expect net acceleration only if the

number of atoms in the excited state is larger than these in
the lower state, i.e., the population is inverted@1#. From the
description above, the acceleration force is a result of stimu-
lated radiation, therefore we call this scheme PASER, which
stands for particle acceleration by stimulated emission of ra-
diation.

Many of the advanced acceleration concepts have lasers
as their central component. The main schemes follow.~i!
Beat-wave accelerator~BWA! in which two slightly different
laser beams illuminate a plasma whose frequency equals the
difference of the two laser frequencies. The injected particles
are accelerated by the resonant space charge wave which
develops in the system@2#. ~ii ! Wake-field acceleration
~WFA!, suggested by Sprangleet al. @3#, is based on a large
wake field left after a very intense but short laser impulse
which propagates in plasma.~iii ! Inverse Čerenkov@4# relies
on the Čerenkov effect to accelerate particles. These are in-
jected in a slow-wave environment~gas! and illuminated at
the Čerenkov angle by an adequate laser beam. A concept
which is similar, but is based on a fast-wave interaction, is
the~iv! inverse free electron laser~IFEL! @5#. In all the above
schemes the radiation is generated in the laser cavity, it is
guided by optics to the interaction region, and then it is uti-
lized to accelerate the electrons in one way or another. In
fact, in the last two cases we also use the inverse of a radia-
tion process. The question which we asked originally was
whether one can directly use the ‘‘inverse laser’’ process for
particle acceleration. According to the detailed calculation
presented here, the answer to this question is affirmative.

In the past, there were two schemes in which an active
medium was suggested in order to support the acceleration
process@6,7#. In both cases the active medium facilitates the
generation of solitons, extending the interaction region in
this manner. To illustrate the role of the active medium let us
consider the wake-field acceleration scheme. It has been
shown that high gradients may develop in the plasma; how-
ever, the interaction with electrons alters the propagation
characteristics of the medium and the overlap of the elec-
trons with the laser beam is limited. Fisher and Tajima@7#
have shown that an active medium can be used in order to
preserve the radiation pulse shape, energy, and velocity. The
scheme relies partially on the self-induced transparency
theory which was first developed by McCall and Hahn@8# in
1969. Fisher and Tajima envision their system to use the
outer shell electrons to form the plasma and the inner shell
electron resonant transition as the constituent of the active
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medium. As previously indicated, in this study it will be
shown that the active medium can be utilized not only to
preserve the laser pulse shape but also to directly accelerate
the electrons; in fact, no plasma is required in the PASER
scheme.

Another acceleration scheme which is under investigation
and has some resemblance to the scheme proposed here is
the dielectric wake-field accelerator~DWFA!, demonstrated
in 1988 by Gaiet al. @9#. It relies on the injection of an
intense electron pulse, of low voltage high current, into a
dielectrically loaded waveguide. The wake~Čerenkov radia-
tion! left by the driving pulse accelerates another bunch
which trails and it is characterized by high voltage and low
current. The approach was originally considered by Voss and
Weiland @10# except that the structure was periodic and the
driving beam was annular. In the PASER scheme the energy
is initially stored in the medium and it is stimulated by the
accelerated bunch itself—thus eliminating the need for syn-
chronization of the two bunches.

This paper is organized as follows: in the next section we
present a general formulation of the force which acts on an
electron as it moves in a vacuum channel bored in a dielec-
tric material. After this general formulation we present two
simple cases of a passive dielectric medium and lossy mate-
rial. This is followed by analysis of the motion in an active
medium.

II. GENERAL FORMULATION

The radiation emitted when a particle moves with a ve-
locity which exceeds the phase velocity of the electromag-
netic wave in the medium comes at the expense of its kinetic
energy. In order to understand the source of this force we
have to realize that the field of a moving particle consists of
a superposition of evanescent waves. As the particle moves
in a vacuum channel of radiusR surrounded by a dielectric
medium «r , the evanescent waves hit the discontinuity at
r5R and they are partially reflected and partially
transmitted—see Fig. 1. It is the reflected waves which act
back on the electron, decelerating it. In this section we shall
examine this process for a scalar dielectric coefficient which
in principle can be complex and frequency dependent.

Consider a point charge (q) moving at a constant velocity
V whose current density is described by

Jz~r ,z,t !52qV
1

2pr
d~r !d~z2Vt!, ~1!

and its time Fourier transform by

Jz~r ,z,v!52
q

~2p!2r
d~r !e2 j ~v/V!z. ~2!

The magnetic vector potential, in the frequency domain, de-
termined by this current density is given by

Az~r,R,z,v!

52pm0E
2`

`

dz8E
0

R

dr8r 8G~r ,zur 8,z8!Jz~r 8,z8,v!

1E
2`

`

dk %~k!e2 jkzI 0~Gr ! ~3!

and

Az~r.R,z,v!5E
2`

`

dk t~k!e2 jkzK0~Lr !, ~4!

where G25k22(v/c)2, L25k22« r(v/c)
2, and

G(r 8,z8ur ,z) is the boundless Green’s function, i.e.,

G~r 8z8ur ,z!5
1

~2p!2
E

2`

`

dk e2 jk~z2z8!H I 0~Gr !K0~Gr 8! for 0,r,r 8,`
K0~Gr !I 0 ~Gr 8! for 0,r 8,r,`

. ~5!

The amplitudes% andt represent the reflected and transmit-
ted waves correspondingly. In order to determine these am-
plitudes we have to impose the boundary conditions atr5R.
For this purpose it is convenient to write the solution of the
magnetic vector potential off axis as

Az~0,r,R,z,v!

5E
2`

`

dk e2 jkz@%~k!I 0~Gr !1a~k!K0~Gr !#, ~6!

where

a~k!52
qm0

~2p!2
dS k2

v

VD . ~7!

From the continuity of the longitudinal electric field (Ez) we
conclude that

FIG. 1. The schematic of the system used to examine the gradi-
ent which acts on a bunch of electrons as they move in a vacuum
channel bored in a dielectric medium. The latter can be complex
and frequency dependent.
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c2

jv Fv2

c2
2k2G@%~k!I 0~GR!1a~k!K0~GR!#

5
c2

jv« r
F« r v2

c2
2k2Gt~k!K0~LR!. ~8!

In a similar way the continuity of the azimuthal magnetic
field implies

G@%~k!I 1~GR!2a~k!K1~GR!#52Lt~k!K1~GR!. ~9!

At this stage we introduce the~normalized! impedances ratio

z[
1

« r

L

G

K0~LR!

K1~LR!
, ~10!

by whose means the amplitudes of the reflected waves are

%5a
zK1~GR!2K0~GR!

zI 1~GR!1I 0~GR!
. ~11!

The only nonzero field on axis is the longitudinal electric
field and only the waves ‘‘reflected’’ from the radial discon-
tinuity contribute to the force which acts on the particle,
therefore

Ez~r50,z5Vt,t !5E
2`

`

dv dk
c2

jv Fv2

c2
2k2G

3%~v,k!ej ~v2kV!t. ~12!

Substituting the explicit expression for%, using the integral
over the Diracd function, and definingx5vR/cbg, we ob-
tain

Ez~r50,z5Vt,t !

5
2 jq

~2p!2«0R
2 E

2`

`

dx x
z~x!K1~ uxu!2K0~ uxu!
z~x!I 1~ uxu!1I 0~ uxu!

. ~13!

At this point it is convenient to define the normalized field
which acts on the particle as

E[Ez~r50,z5Vt,t !S q

4p«0R
2D 21

5
2

p E
0

`

dx x ReF1j z~x!K1~ uxu!2K0~ uxu!
z~x!I 1~ uxu!1I 0~ uxu! G . ~14!

Clearly from this representation we observe that for a non-
zero force to act on the particle the impedance ratioz has to
be complex since the argument of the modified Bessel func-
tions is real.

We can make one step further and simplify this expres-
sion by defining

z~x![uz~x!uejc~x!, ~15!

and usingK0(x)I 1(x)1K1(x)I 0(x)51/x, we obtain

E5
2

p E
0

`

dx
uz~x!usinc~x!

I 0
2~x!1uz~x!u2I 1

2~x!12uz~x!uI 0~x!I 1~x!cosc~x!

5
2

p E
0

`

dx
Im@z~x!#

$I 0~x!1Re@z~x!#I 1~x!%21$Im@z~x!#I 1~x!%2
. ~16!

We shall use this expression to evaluate the force which acts
on a moving charge for three cases; in the next section for
the Čerenkov radiation case, followed by the lossy~Ohmic!
medium, and then by the active medium.

III. Č ERENKOV FORCE

In order to evaluate the integral in~16! for a dielectric
medium and a particle whose velocitybc is larger than
c/A« r , we go back to the expression for the normalized im-
pedance in~10! which now reads

z~x!5 j
g

« r
A« rb

221
K0~ jxgA« rb

221!

K1~ jxgA« rb
221!

. ~17!

With this explicit expression the integral for the normalized
gradient can be calculated numerically and the result is illus-
trated in the two frames of Fig. 2. Analytic expressions can
be found if we assume that the main contribution occurs for
large arguments of the Bessel function, implying that prima-

rily short ~compare to the radius! wavelengths contribute,
i.e., (vR/c)A« r2b22@1, hence

z~x!. j
g

« r
A« rb

221. ~18!

Since subject to this assumptionc5p/2 and uzu is constant
we can evaluateE ,

E5
2

p E
0

`

dx
uz~x!u

I 0
2~x!1uz~x!u2I 1

2~x!
, ~19!

for two regimes: first whenuzu@1, i.e.,g@1, the contribution
to the integral is primarily from small values ofx, thus

E.
2

p E
0

`

dx
uzu

I1uzu2x2/4
.
4

p E
0

`

du
1

11u2
.2. ~20!

The same integral at the other extreme~uzu!1! reads
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E.
2

p
uzu E

0

`

dx
1

I 0
2~x!

.0.871uzu, ~21!

and overall

E.H 0 for b,1/A« r

0.871gA« rb
221/« r for g!« r /A« rb

221

2 for g@« r /A« rb
221.

~22!

These two expressions are in good agreement with the nu-
merical result illustrated in Fig. 2. It is interesting to note that
for ultrarelativistic electrons the decelerating Cˇ erenkov force
reaches an asymptotic value which is independent ofg and
the dielectric coefficient«r ; it is given byE5q/2p«0R

2. For
what follows it is important to observe that the value of the
normalized impedance~z! determines the force that the point
charge experiences in the intermediary regime.

IV. OHMIC FORCE

If in the Čerenkov case the electron has to exceed a cer-
tain velocity in order to generate radiation and therefore to
experience a decelerating force, then in the case of a lossy
medium the moving electron experiences a decelerating
force starting from vanishingly small velocity. This is be-
cause it induces currents in the surrounding walls and as a
result power is dissipated—which is equivalent to the emit-
ted power in the Cˇ erenkov case. The source of this power is
the J•E term which infers the existence of a decelerating
force acting on the electron. In order to evaluate this force
we use the formulation developed in Sec. II only that in this
case the dielectric coefficient is complex and it is given by

« r512 j
s

«0v
, ~23!

wheres is the ~finite! conductivity of the surrounding me-
dium. It is convenient to use the same notation as above,
therefore the normalized impedancez from ~18! is replaced
by

z.
1

12 j s̄/x
A11 j ~gb!2

s̄

x
. ~24!

In this expressions̄[sh0R/gb which for typical metals
andR;1 cm is on the order of 107/gb, thus for any practical
purposes̄@1. Hence

z.gbej3p/4Ax

s̄
. ~25!

Note that the phase of the normalized impedance isc53p/4.
Substituting this expression in~16! we obtain

E5
2

p E
0

`

dx
aAx

@ I 0~x!2aAxI1~x!#21@aAxI1~x!#2
,

~26!

wherea[A(gb)3/sh0R. This integral was evaluated nu-
merically and the result ofE as a function ofa is plotted in
Fig. 3. The integral can be evaluated analytically for two
extreme regimes: in the first case the~normalized! momen-
tum of the particle is assumed to be much smaller than the
normalized conductivity term, i.e.,~gb!3!sh0R thusa!1,
in which case

E.aF 2p &2 E
0

`

dx
Ax
I 0
2~x!G.0.764a. ~27!

The second case corresponds to a highly relativistic particle,
i.e., ~gb!3@sh0R, which, using the previous notation, means
a@1. In this regime the main contribution to the integral is
from the small values ofx, a fact which justifies the expan-
sion of the modified Bessel functions in Taylor series. De-
fining y2[a2x3/2 we have

FIG. 2. The normalized gradient which acts on the bunch as it
moves in a lossless dielectric medium. The left frame illustrates the
force at low energies and the right frame at high energies.

FIG. 3. The normalized gradient experienced by a bunch of
electrons as it moves in a vacuum channel bored in a lossy medium.
The parametera is defined bya5A(gb)3/sh0R.
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E.
4&

3p E
0

`

dy
1

11y22y&

.2. ~28!

Therefore

E.H 0.764a for a!1

2 for a@1
. ~29!

As in the Čerenkov case, it indicates that for ultrarelativistic
particles the decelerating force is independent ofg and of the
material. However, the threshold forg in this regime is much
higher. In both cases the particle is decelerated by a force
which corresponds to a~positive! image charge located at a
distanceR/& behind the electron.

In the low energy regime the decelerating force increases
rapidly with the momentum of the particle. The square root
of the conductivity indicates that this is a ‘‘skin-depth’’ ef-
fect. A clearer interpretation of this statement is obtained if
we define the characteristic frequencyv0[2c/R~gb!3 by
whose means

d5A 2

sm0v0
, ~30!

and

E.H 0.54d/R for d!R

2 for d@R.
~31!

In the framework of this notation we observe that the char-
acteristic frequency is low for very relativistic electrons and
if the the skin depth is much larger than the radius then all
the bulk material ‘‘participates’’ in the deceleration process.
On the other hand, if the frequency is high, then the skin
depth is small~comparing to the radius! and only a thin layer
dissipates power, therefore the loss is proportional tod. Fi-
nally, if the conductivity of the material is negative, this is to
say that we have an active medium, thenc55p/4 and the
force is accelerating, which means that energy can be trans-
ferred from the medium to the electron. This topic will be
discussed next.

V. FORCE IN ACTIVE MEDIUM

The interaction of a moving ‘‘macroparticle’’ with a sta-
tionary two-state quantum system which consists of either
atoms or molecules is considered here within the framework
of the macroscopic~and scalar! dielectric coefficient. This
coefficient is given by

« r~v!512x
~v2v0!T21 j

11j21~v2v0!
2T2

2 ~32!

and it is tacitly assumed that the transients at the microscopic
level are negligible. The macroparticle moves along a
vacuum channel ‘‘bored’’ in an otherwise infinite dielectric
medium.v0/2p is the resonant frequency of the medium,T2
is the spectral linewidth,x5m2DNT2/«0\ is the normalized
population inversion~and it is negative in this case!; m is the
atom’s dipole moment,DN[N12N2 is the density of the

population difference—subscript 1 represents the lower en-
ergy state and subscript 2 the higher one. Changes in the
population difference due to energy transfer are considered
here through the saturation termj25~E/Esat!

2; E is the am-
plitude of the acting electric field and the saturation field is
given byEsat5\/mAtT2 wheret is the characteristic time in
which the population reaches its equilibrium state. Note that
the background dielectric coefficient is assumed to be unity,
excluding in this way the possibility of generation of Cˇ eren-
kov radiation.

For the analytic evaluation of the integral it is convenient
to further simplify the model which describes the medium.
Examining the dielectric coefficient in~32! we observe that
its real part is unity at resonance and off resonance
@Re~«r21!#, is antisymmetric relative to resonance, and van-
ishes far away from this point. Consequently, we approxi-
mate the dielectric coefficient with one whose real part is
unity at all frequencies and its imaginary part is constant in a
window of frequencies around resonance. The width of this
window is determined by the linewidth and is determined
such that the area of this window is identical with that cal-
culated from~32!. Explicitly « r(v).12 j s̄(v) and

s̄ ~v![s̄03 H1 for uv2v0uT2,p/2
0 for uv2v0uT2.p/2 , ~33!

wheres̄05x/~11z2!.
With this definition the normalized impedance reads

z~x!5
1

12 j s̄~x!
A11 j ~gb!2s̄~x!

3
K0@xA11 j ~gb!2s̄~x!#

K1@xA11 j ~gb!2s̄~x!#
. ~34!

We consider the relativistic case such that~gb!2us̄0u@1;
moreover, at the typical frequencies of interest we assume
that v0Rus̄0u

1/2/c!1. Consequently, the normalized imped-
ance function is

z~x!. jxg2s̄~x!. ~35!

This implies thatuzu5xg2us̄u and the phase ofz is given by

c5H p/2 for s̄0.0

0 for s̄050

2p/2 for s̄0,0,

~36!

where we assumed thatus̄u,1, thus c5~p/2!sgn(s̄). The
normalized gradient according to~16! is

E5
2

p E
0

`

dx
xg2s̄~x!

I 0
2~x!1x2g4s̄2~x!I 1

2~x!
. ~37!

From this last expression we observe that the contribution of
the largex is small because of the exponential decay associ-
ated with the modified Bessel functions. Furthermore, if we
assume that the particle is sufficiently relativistic and bearing
in mind that in practice the integrand is nonzero only in a
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frequency domain determined by~33! then we can determine
that if v0R/c!g then we can approximateI 0(x).1 and
I 1(x).x/2, thus

E5
2

p E
x2

x1 dx xg2s̄0

11~x2g2s̄0/2!2
, ~38!

wherex65R(v06p/2T2)/cbg. The integral can be evalu-
ated analytically and the result is

E5
2

p FarctanS 12 s̄0g
2x1

2 D2arctanS 12 s̄0g
2x2

2 D G . ~39!

Substituting the explicit expression forx6 and assuming that
s̄ ~v0R/c!

2!1, we can approximate the inverse trigonometric
function with its argument, thus

E.
2

p S 12 g2s̄0D S R

cbg D 2F S v01
p

2T2
D 22S v02

p

2T2
D 2G

.2s̄0S v0

c
RD R

cT2
. ~40!

This expression illustrates in an analytic form the fact that if
the population is inverted then the gradient is negative cor-
responding to an accelerating force. If the population is not
inverted the force slows down the electrons.

For completeness let us now consider the other extreme
where v0Rus0u

1/2/c@1 but still for a relativistic particle,
thus ~gb!2us0u@1. The normalized impedance function is

z~x!.Ajg2s̄~x!. ~41!

This implies thatuzu5gus̄u1/2 and the phase ofz is given by

c5H p/4 for s̄0.0

0 for s̄050

2p/4 for s̄0,0,

~42!

where we assumed thatus̄u!1, thusc5~p/4!sgn(s̄). The
normalized gradient according to~16! is

E5
2

p
sgn~ s̄0!E

x2

x1

dx
gAus̃0u/2

@ I 0~x!1I 1~x!gAus̃0u/2#21@ I 1~x!gAus̄0u/2#2
. ~43!

As in the previous cases, for highly relativistic particles, i.e.,
v0R/c!g, the main contribution to the integral comes from
the small values ofx, therefore we use the asymptotic ex-
pression for the modified Bessel functions@I 0(x).1 and
I 1(x).x/2# to write

E5
2

p
sgn~ s̄0!E

x2

x1

dx
gAus̄0u/2

11g2us̄0ux2/41xgAus̄0u/2
. ~44!

The integral can be evaluated analytically and the result is

E.
4

p
sgn~ s̄0!H arctanFAus̄0u

2

R

c S v01
p

2T2
D G

2arctanFAus̄0

2

R

c S v02
p

2T2
D G J . ~45!

Assuming that the frequency linewidth is relatively narrow
~v0T2@1! and also thats̄0u(v0R/c)

2@1, we can approxi-
mate~45! with

E.4S R

cT2
D S v0

c
RD 22 sgn~ s̄ !

Aus̄0u/2
. ~46!

It is now instructive to summarize these two results@~40!,
~46!# from the perspective of one framework. For this
purpose we use the definition of the skin depth in~30!
with the conductivity defined ass[us̄uv0«0, thus d
5A2/us̄0u(v0 /c)

2. With this definition we get

E.sgn~ s̄ !
1

v0T2
H 4d/R for d!R

4~R/d!2 for d@R.
~47!

This expression is smaller than 2~the asymptotic Cˇ erenkov
value! for most cases of interest, thus we should aim to avoid
competition with the Cˇ erenkov process since the latter is
expected to be stronger.

Our efforts so far aimed to develop analytic expression
for the reaction force of a medium as a relativistic electron
traverses it. The effect, however, is not limited to relativistic
electrons but it may occur also in the case of nonrelativistic
particles. For this purpose let us consider~34! at the limit
~gb!2us̄0u!1, in which case the normalized impedance is
given by

z~x!5
1

12 j s̄~x!

K0~x!

K1~x!
, ~48!

if we further assume thatus̄0u!1 then the normalized gradi-
ent is given by

E.s0

2

p E
x2

x1

dx x2K0~x!K1~x!. ~49!

The integrand has a peak value forx.0.4, therefore in order
to achieve maximum gradient it will be necessary that the
integration domain (x2 ,x1) will be around this value. In
other words,
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v0

c
R;0.4b. ~50!

In Fig. 4 we illustrate the gradient which acts on a 10° bunch
of electrons moving in a 0.2 mm channel bored in an active
medium whose resonance is atl0510 mm and the linewidth
is determined byv0T2.100; we also assume thatn51, x5
20.1, andj50.1. Note that for these parameters a bunch
which has an initial energy of 4.5 keV experiences a peak
acceleration gradient of about 11 kV/m. If we now assume
that the refraction coefficient is not unity butn52 then the
shape of the curve is similar but the peak value occurs at an
initial energy of 3.1 keV and the gradient is one order of
magnitude smaller, namely, 1 kV/m. Thus even in the ab-
sence of Cˇ erenkov radiation the background refraction coef-
ficient has a decremental effect. The maximum gradient in
this case is achieved when the linewidth is very large, i.e.,
x2;0 andx1;` ~corresponding tov0T2;1!. The normal-
ized gradient in this case is given by

E.
x

p
. ~51!

Let us now examine the gradient at higher energies but
also with much more energy stored in the medium. In other
words, let us consider a medium whosel051 mm,
v0T2;100, andn51. For effective interaction the radius of
the channel has to be on the order of the radiation wave-
length: in this case we choseR51 mm. The other parameters
areN5108, s̄0520.1, andn51. Figure 5 illustrates the gra-
dient which acts on the particle as a function of its initial
energy. For energies on the order of a few tens of MeV the
gradient a bunch of 108 particles experiences is on the order
of GV/m. One can therefore envision a system in which a
bunch of electrons is injected into a chamber filled with ac-
tive gas. At these energies the mean free path, even at high
pressure, is much longer than the practical length of a typical
acceleration module~1–10 m!. In spite of these promising
gradients there still remains the problem of competition from
the Čerenkov effect.

In order to examine the feasibility of the method in a
realistic medium we shall consider a gas whose molecules
are assumed to have three resonances~four-level system! and
only in one or at the most two, the population is inverted.
The remainder serve as a model for the background refrac-
tion coefficient of the medium. Explicitly, the dielectric co-
efficient of the medium is assumed to have the form

« r~v!512(
i50

2

x i

~v2v0,i !T2,i1 j

11j21~v2v0,i !
2T2,i

2

.12(
i50

2

s̄ i~v!, ~52!

where, similarly to~33!,

s̄ i~v![s̄0,i3 H1 for uv2v0,i uT2,i,p/2
0 for uv2v0,i uT2,i.p/2 ~53!

and s̄0,i5x i /(11j2). The parameters are as in the previous
case, with the exception of the following, the three reso-
nances are chosen atl050.8 mm, l151.0 mm, andl251.3
mm. The linewidth in each case satisfiesv iT2,i5100. From
the cases we examined we chose to present here six:

~ i! x050.00, x1520.10, x250.00,

~ ii ! x050.00, x1520.10, x2520.05,

~ iii ! x050.05, x1520.10, x250.00,

~ iv! x050.05, x1520.10, x250.10,

~v! x050.06, x1520.10, x250.01,

~vi! x0520.10, x1520.02, x250.10.

~54!

These six cases are illustrated in Fig. 6. For reference to the
previous discussion case~i! is identical with Fig. 5. The
other two curves in the left frame illustrate the deceleration

FIG. 4. Accelerating gradient at low energies. There is an opti-
mal initial energy for which the gradient has a maximum value. FIG. 5. Accelerating gradient at high energies. The real part of

the refraction coefficient is assumed to be one.
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process associated with two resonances whose population is
not inverted. The effect of shorter wavelength is, as ex-
pected, more pronounced and in this case the acceleration at
high energies is very small. In the right frame we observe
that if the population inversion is not sufficiently high com-
paring to the other two transitions then the bunch is actually
decelerated—see~iv!. Even if the population inversion of
one transition is larger than the other two, acceleration is not
guaranteed at high energies as revealed by~v!. However,
proper excitation of the material may ensure acceleration at
high energies although at low energies the Cˇ erenkov process
is dominant—as revealed by~vi!.

VI. DISCUSSION

In this study we examined the force which acts on a small
bunch of electrons as it moves along a vacuum channel
bored in a medium. It was shown that the reaction of the
medium to the presence of the bunch depends strongly on the
characteristics of the medium. In the dielectric case the me-
dium is inert if the velocity of the electron is below the
Čerenkov condition. As the particle exceeds this limit it is
decelerated. When the medium is a lossy material, the bunch

is slowed down from virtually zero velocity. The important
result of this study is the proof that when the medium is
active, the reaction field switches its phase and it accelerates
the moving bunch. In other words, the bunch may receive
energy initially stored in the medium. The process occurs at
low as well as at high energies. In the latter case probably
only the gas medium is relevant to the acceleration process
due to the existence of a substantial refraction coefficient, in
which case the motion is dominated by Cˇ erenkov decelera-
tion.

At low energies the electrons can also be accelerated and
according to Fig. 4 there is clearly an optimal input energy
for a given geometry and a given medium. In contrast to the
highly relativistic case where high frequencies are preferable,
the nonrelativistic regime operates with relatively low fre-
quency systems~e.g., masers!. The effect of the frequency on
the gradient is set by two opposite trends: on one hand, the
higher the frequency, the larger the energy stored in the me-
dium and thus the larger the gradient. On the other hand, the
gradient of an evanescent wave decays exponentially from
the particle’s location to the wall of the vacuum channel.

All the examples presented above assumed that
vT2;100, which is typically orders of magnitude smaller
than actually used in~cw! lasers. Consequently the medium
used for coherent generation of radiation is not necessarily
adequate for acceleration. In fact, we should realize that
there is a trade-off between choosing the conditions for the
shortestT2 possible in order to increase the gradient and a
longT2 which will allow enough time between the excitation
of the medium and the passage of the bunch. This condition
may become less stringent if a train of bunches is injected at
the resonance of the medium.

Finally, as in the cases of passive dielectric or lossy me-
dium at high energies the gradient is independent of the ki-
netic energy of the particles.
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